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Abstract—The Internet of Things (IoT) is being hailed as the next wave revolutionizing our society, and smart homes, enterprises, and
cities are increasingly being equipped with a plethora of IoT devices. Yet, operators of such smart environments may not even be fully
aware of their IoT assets, let alone whether each IoT device is functioning properly safe from cyber-attacks. In this paper, we address
this challenge by developing a robust framework for IoT device classification using traffic characteristics obtained at the network level.
Our contributions are fourfold. First, we instrument a smart environment with 28 different IoT devices spanning cameras, lights, plugs,
motion sensors, appliances and health-monitors. We collect and synthesize traffic traces from this infrastructure for a period of 6
months, a subset of which we release as open data for the community to use. Second, we present insights into the underlying network
traffic characteristics using statistical attributes such as activity cycles, port numbers, signalling patterns and cipher suites. Third, we
develop a multi-stage machine learning based classification algorithm and demonstrate its ability to identify specific IoT devices with
over 99% accuracy based on their network activity. Finally, we discuss the trade-offs between cost, speed, and performance involved in
deploying the classification framework in real-time. Our study paves the way for operators of smart environments to monitor their IoT
assets for presence, functionality, and cyber-security without requiring any specialized devices or protocols.

Index Terms—IoT, network characteristics, device visibility, classification, machine learning.
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1 INTRODUCTION

THE number of devices connecting to the Internet is bal-
looning, ushering in the era of the “Internet of Things”

(IoT). IoT refers to the tens of billions of low cost devices
that communicate with each other and with remote servers
on the Internet autonomously. It comprises everyday objects
such as lights, cameras, motion sensors, door locks, ther-
mostats, power switches and household appliances, with
shipments projected to reach nearly 20 billion by 2020 [1].
Thousands of IoT devices are expected to find their way in
homes, enterprises, campuses and cities of the near future,
engendering “smart” environments benefiting our society
and our lives.

The proliferation of IoT, however, creates an important
problem. Operators of smart environments can find it diffi-
cult to determine what IoT devices are connected to their
network and further to ascertain whether each device is
functioning normally. This is mainly attributed to the task
of managing assets in an organization, which is typically
distributed across different departments. For example, in
a local council, lighting sensors may be installed by the
facilities team, sewage and garbage sensors by the sanitation
department and surveillance cameras by the local police
division. Coordinating across various departments to obtain
an inventory of IoT assets is time consuming, onerous and
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error-prone, making it nearly impossible to know precisely
what IoT devices are operating on the network at any point
in time. Obtaining “visibility” into IoT devices in a timely
manner is of paramount importance to the operator, who
is tasked with ensuring that devices are in appropriate
network security segments, are provisioned for requisite
quality of service, and can be quarantined rapidly when
breached. The importance of visibility is emphasized in
Cisco’s most recent IoT security report [2], and further
highlighted by two recent events: sensors of a fishtank that
compromised a casino in Jul 2017 [3], and attacks on a
University campus network from its own vending machines
in Feb 2017 [4]. In both cases, network segmentation could
have potentially prevented the attack and better visibility
would have allowed rapid quarantining to limit the damage
of the cyber-attack on the enterprise network.

One would expect that devices can be identified by their
MAC address and DHCP negotiation. However, this faces
several challenges: (a) IoT device manufacturers typically
use NICs supplied by third-party vendors, and hence the
Organizationally Unique Identifier (OUI) prefix of the MAC
address may not convey any information about the IoT
device; (b) MAC addresses can be spoofed by malicious de-
vices; (c) many IoT devices do not set the Host Name option
in their DHCP requests [5]; indeed we found that about half
the IoT devices we studied do not reveal their host names, as
shown in Table 1; (d) even when the IoT device exposes its
host name it may not always be meaningful (e.g. WBP-EE4C
for Withings baby monitor in Table 1); and lastly (e) these
host names can be changed by the user (e.g. the HP printer
can be given an arbitrary host name). For these reasons,
relying on DHCP infrastructure is not a viable solution to
correctly identify devices at scale.
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TABLE 1
MAC address and DHCP host name of IoT devices used in our testbed.

IoT device MAC address OUI DHCP host name
Amazon Echo 44:65:0d:56:cc:d3 Amazon Technologies Inc.
August Doorbell Cam e0:76:d0:3f:00:ae AMPAK Technology, Inc.
Awair air quality monitor 70:88:6b:10:0f:c6 Awair-4594
Belkin Camera b4:75:0e:ec:e5:a9 Belkin International Inc. NetCamHD
Belkin Motion Sensor ec:1a:59:83:28:11 Belkin International Inc.
Belkin Switch ec:1a:59:79:f4:89 Belkin International Inc.
Blipcare BP Meter 74:6a:89:00:2e:25 Rezolt Corporation
Canary Camera 7c:70:bc:5d:5e:dc IEEE Registration Authority Ambarella/C100F1615229
Dropcam 30:8c:fb:2f:e4:b2 Dropcam
Google Chromecast 6c:ad:f8:5e:e4:61 AzureWave Technology Inc. Chromecast
Hello Barbie 28:c2:dd:ff:a5:2d AzureWave Technology Inc. Barbie-A52D
HP Printer 70:5a:0f:e4:9b:c0 Hewlett Packard HPE49BC0
iHome PowerPlug 74:c6:3b:29:d7:1d AzureWave Technology Inc. hap-29D71D
LiFX Bulb d0:73:d5:01:83:08 LIFI LABS MANAGEMENT PTY LTD LIFX Bulb
NEST Smoke Sensor 18:b4:30:25:be:e4 Nest Labs Inc.
Netatmo Camera 70:ee:50:18:34:43 Netatmo netatmo-welcome-183443
Netatmo Weather station 70:ee:50:03:b8:ac Netatmo
Phillip Hue Lightbulb 00:17:88:2b:9a:25 Philips Lighting BV Philips-hue
Pixstart photo frame e0:76:d0:33:bb:85 AMPAK Technology, Inc.
Ring Door Bell 88:4a:ea:31:66:9d Texas Instruments
Samsung Smart Cam 00:16:6c:ab:6b:88 Samsung Electronics Co.,Ltd
Smart Things d0:52:a8:00:67:5e Physical Graph Corporation SmartThings
TP-Link Camera f4:f2:6d:93:51:f1 TP-LINK TECHNOLOGIES CO.,LTD. Little Cam
TP-Link Plug 50:c7:bf:00:56:39 TP-LINK TECHNOLOGIES CO.,LTD. HS110(US)
Triby Speaker 18:b7:9e:02:20:44 Invoxia
Withings Baby Monitor 00:24:e4:10:ee:4c Withings WBP-EE4C
Withings Scale 00:24:e4:1b:6f:96 Withings
Withings sleep sensor 00:24:e4:20:28:c6 Withings WSD-28C6

In this paper, we address the above problem by devel-
oping a robust framework that classifies each IoT device
separately in addition to one class of non-IoT devices with
high accuracy using statistical attributes derived from net-
work traffic characteristics. Qualitatively, most IoT devices
are expected to send short bursts of data sporadically. Quan-
titatively, our preliminary work in [6] was one of the first
attempts to study how much traffic IoT devices send in a
burst and how long they idle between activities. We also
evaluated how much signaling they perform (e.g. domain
lookups using DNS or time synchronization using NTP)
in comparison to the data traffic they generate. This paper
significantly expands on our prior work by employing a
more comprehensive set of attributes on trace data captured
over a much longer duration (of 6 months) from a test-bed
comprising 28 different IoT devices.

There is no doubt that it is becoming increasingly impor-
tant to understand the nature of IoT traffic. Doing so helps
contain unnecessary multicast/broadcast traffic, reducing
the impact they have on other applications. It also enables
operators of smart cities and enterprises to dimension their
networks for appropriate performance levels in terms of re-
liability, loss, and latency needed by environmental, health,
or safety applications. However, the most compelling reason
for characterizing IoT traffic is to detect and mitigate cyber-
security attacks. It is widely known that IoT devices are by
their nature and design easy to infiltrate [7], [8], [9], [10],
[11], [12]. New stories are emerging of how IoT devices
have been compromised and used to launch large-scale
attacks [13]. The large heterogeneity in IoT devices has led
researchers to propose network-level security mechanisms
that analyze traffic patterns to identify attacks (see [14] and
our recent work [15]); success of these approaches relies on
a good understanding of what “normal” IoT traffic profile
looks like.

Our primary focus in this work is to establish a machine
learning framework based on various network traffic char-
acteristics to identify and classify the default (i.e. baseline)
behavior of IoT devices on a network. Such a framework
can potentially be used in the future to detect anomalous

behavior of IoT devices (potentially due to cyber-attacks),
and such anomaly detection schemes are beyond the scope
of this paper. This paper fills an important gap in the
literature relating to classification of IoT devices based on
their network traffic characteristics. Our contributions are:

1) We instrument a living lab with 28 IoT devices em-
ulating a smart environment. The devices include
cameras, lights, plugs, motion sensors, appliances
and health-monitors. We collect and synthesize data
from this environment for a period of 6 months. A
subset of our data is made available for the research
community to use.

2) We identify key statistical attributes such as activity
cycles, port numbers, signaling patterns and cipher
suites, and use them to give insights into the under-
lying network traffic characteristics.

3) We develop a multi-stage machine learning based
classification algorithm and demonstrate its ability
to identify specific IoT devices with over 99% accu-
racy based on their network behavior.

4) We evaluate the deployment of the classification
framework in real-time, by examining the trade-offs
between costs, speed, and accuracy of the classifier.

The rest of this paper is organized as follows: §2 de-
scribes relevant prior work. We present our IoT setup and
data traces in §3, and in §4 characterize traffic attributes
of the various IoT devices. In §5 we propose a machine
learning based multi-stage device classification method and
evaluate its performance, followed by a discussion on the
real-time operation of the proposed system in §6. The paper
is concluded in §7.

2 RELATED WORK
There is a large body of work characterizing general Internet
traffic [16], [17], [18], [19]. These prior works largely focus
on application detection (e.g. Web browsing, Gaming, Mail,
Skype VoIP, Peer-to-Peer, etc.). However, studies focusing
on characterizing IoT traffic (also referred to as machine-to-
machine or M2M traffic) are still in their infancy.
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Fig. 1. Testbed architecture showing connected 28 different IoT devices
along with several non-IoT devices, and telemetry collected across the
infrastructure is fed to our classification models.

Analysis of Empirical Traces: The work in [20] is one of
the first large-scale studies to delve into the nature of M2M
traffic. It is motivated by the need to understand whether
M2M traffic imposes new challenges for the design and
management of cellular networks. The work uses a traffic
trace spanning one week from a tier-1 cellular network
operator and compares M2M traffic with traditional smart-
phone traffic from a number of different perspectives –
temporal variations, mobility, network performance, and so
on. The study informs network operators to be cognizant of
these factors when managing their networks.

In [21], the authors note that the amount of traffic
generated by a single M2M device is likely to be small,
but the total traffic generated by hundreds or thousands
of M2M devices would be substantial. These observations
are to some extent corroborated by [22], [23], which note
that a remote patient monitoring application is expected to
generate about 0.35 MB per day and smart meters roughly
0.07 MB per day.

Aggregated Traffic Model: A Coupled Markov Modu-
lated Poisson Processes framework to capture the behavior
of a single machine-type communication as well as the
collective behavior of tens of thousands of M2M devices is
proposed in [24]. The complexity of the CMMPP framework
is shown to grow linearly with the number of M2M devices,
rendering it effective for large-scale synthesis of M2M traffic.

In [25], the authors show that it is possible to split the
(traffic) state of an M2M device into three generic cate-
gories, namely periodic update, event driven, and payload
exchange, and a number of modelling strategies that use
these states are developed. An illustration of model fitting
is shown via a use-case in fleet management comprising
1000 trucks run by a transportation company. The fitting is
based on measured M2M traffic from a 2G/3G network.
A simple model to estimate the volume of M2M traffic
generated in a wireless sensor network enabled connected
home is constructed in [26]. Since behavior of sensors is very
application specific, the work identifies certain common
communication patterns that can be attributed to any sensor

device. Using these attributes, four generalized equations
are proposed to estimate the volume of traffic generated by
a sensor network enabled connected apartment/home.

Use of Machine Learning: Various machine-learning-
based analytical methods have been proposed in the
literature to classify traffic application or identify mal-
wares/botnets for typical computer networks. The work
in [27] uses deep learning to classify flow types such as
HTTP, SMTP, Telnet, QUIC, Office365, and YouTube by
considering six features namely source/destination port
number, payload volume, TCP window size, inter-arrival
time and direction of traffic that are extracted from the first
20 packets of a flow. The work carried out in [28] suggests
that botnets exhibit identifiable traffic patterns that can be
classified by considering features such as average time be-
tween successive flows, flow duration, inbound/outbound
traffic volume, and Fourier transformation over the flow
start times. Detection of malicious activity on the network
was enhanced in [29] and [30] by combining these flow-
level features with packet-level attributes including packet
size, byte distribution of payload, inter arrival times of pack-
ets and TLS handshake metadata (i.e. cipher suite codes).
Further, authors have released an open source libpcap-based
tool called Joy [31] to extract these features from the passive
capture of network traffic.

In the context of IoT, [32] uses machine learning to
classify a single TCP flow from authorized devices on the
network. It employs over 300 attributes (packet-level and
flow-level), though the most influential ones are minimum,
median and average of packets Time-To-Live (TTL), the ratio
of total bytes transmitted and received, total number packets
with reset (RST) flag, and the Alexa rank of server.

While all the above works make important contribu-
tions, they do not undertake fine-grained characterization
and classification of IoT devices in a smart environment
such as a home, city, campus or enterprise. Furthermore,
statistical models are not developed that enable IoT device
classification based on their network traffic characteristics.
Most importantly, prior works do not make any data set
publicly available for the research community to use and
build upon. Our work overcomes these shortcomings.

3 IOT TRAFFIC COLLECTION AND SYNTHESIS

In this section, we describe our smart environment infras-
tructure for collecting and synthesizing traffic from various
IoT devices.

3.1 Experimental Test-bed

A real-life architecture of a “smart environment” is depicted
in Fig. 1 that serves a wide range of IoT and non-IoT
devices over its (wired/wireless) network infrastructure and
allows them to communicate with the Internet servers via a
gateway. Our lab setup is a specialized implementation of
this architecture, housed at our campus facility, comprises
one node of TP-Link Archer C7 v2 WiFi access point (rep-
resenting internal switch) collocated with the Internet gate-
way. The TP-Link access point, flashed with the OpenWrt
firmware release Chaos Calmer (15.05.1, r48532), serves as
the gateway to the public Internet. We also installed addi-
tional OpenWrt packages on the gateway, namely tcpdump
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(a) Amazon Echo. (b) LiFX lightbulb.

Fig. 2. Sankey diagram of daily network activity for two representative IoT devices, Amazon Echo and LiFX lightbulb. A clear distinction is observed
in terms of their communication patterns, i.e. the servers they talk to, and the port numbers and protocols used for data exchange.

(4.5.1-4) for capturing traffic, bash (4.3.39-1) for
scripting, block-mount package for mounting exter-
nal USB storage on the gateway, kmod-usb-core and
kmod-usb-storage (3.18.23-1) for storing the traffic
trace data on the USB storage.

In our lab setup, the WAN interface of the TP-Link access
point is connected to the public Internet via the university
network, while the IoT devices are connected to the LAN
and WLAN interfaces respectively. Our smart environment
has a total of 28 unique IoT devices representing different
categories along with several non-IoT devices. Here, IoT
refers to specific-purpose Internet connected devices (e.g.
cameras and smoke sensors), while general-purpose devices
(e.g. phones and laptops) fall into the non-IoT category.

The IoT devices include cameras (Nest Dropcam, Sam-
sung SmartCam, Netatmo Welcome, Belkin camera, TP-Link
Day Night Cloud camera, Withings Smart Baby Monitor,
Canary camera, August door bell, Ring door bell), switches
and triggers (iHome, TP-Link Smart Plug, Belkin Wemo
Motion Sensor, Belkin Wemo Switch), hubs (Smart Things,
Amazon Echo), air quality sensors (NEST Protect smoke
alarm, Netatmo Weather station, Awair air quality monitor),
electronics (Triby speaker, PIXSTAR Photoframe, HP Printer,
Hello barbie, Google Chromecast), healthcare devices (With-
ings Smart scale, Withings Aura smart sleep sensor, Blipcare
blood pressure meter) and light bulbs (Phips Hue and LiFX
Smart Bulb). Several non-IoT devices were also connected to
the testbed, such as laptops, mobile phones and an Android
tablet. The tablet was used to configure the IoT devices as
recommended by the respective device manufacturers.

3.2 Trace Data
All the traffic on the LAN side was collected using the
tcpdump tool running on OpenWrt [33]. It is important
to have a one-to-one mapping between a physical device
and a known MAC address (by virtue of being in the
same LAN) or IP address (i.e. without NAT) in the traffic
trace. Capturing traffic on the LAN allowed us to use MAC
address as the identifier for a device to isolate its traffic
from the traffic mix comprising many other devices in the
network. We developed a script to automate the process of
data collection and storage. The resulting traces were stored
as pcap files on an external USB hard drive of 1 TB storage

attached to the gateway. This setup permitted continuous
logging of the traffic across several months.

We started logging the network traffic in our smart
environment from 1-Oct-2016 to 13-Apr-2017, i.e. over a
period of 26 weeks. The raw trace data contains packet
headers and payload information. The process of data col-
lection and storage begins at midnight local time each day
using the Cron job on OpenWrt. We wrote a monitoring
script on the OpenWrt to ensure that data collection/storage
was proceeding smoothly. The script checks the processes
running on the gateway at 5 second intervals. If the logging
process is not running, then the script immediately restarts
it, thereby limiting any data loss event to only 5 seconds. To
make the trace data publicly available, we set up an Apache
server on a virtual machine (VM) in our university data
center and wrote a script to periodically transfer the trace
data from the previous day, stored on the hard drive, onto
the VM. The trace data from two weeks is openly available
for download at: http://iotanalytics.unsw.edu.au/. The size
of the daily logs varies between 61 MB and 2 GB, with an
average of 365 MB.

4 IOT TRAFFIC CHARACTERIZATION

We now present our observations using passive packet-
level analysis of traffic from 28 IoT devices over the course
of 26 weeks. We study a broad range of IoT traffic char-
acteristics including activity patterns (e.g. distribution of
volume/times during active/sleep periods), and signalling
(e.g. domain names requested, server-side port numbers
used and TLS handshake exchanges).

IoT traffic constitutes (i) traffic generated by the devices
autonomously – e.g. DNS, NTP, etc. that are unaffected
by human interaction, as well as (ii) traffic generated due
to users interacting with the devices – e.g. Belkin Wemo
sensor responding to detection of movement, Amazon Echo
responding to voice commands issued by a user, LiFX
lightbulb changing colour and intensity upon user request,
Netatmo Welcome camera detecting an occupant and in-
structing the LiFX light bulb to turn on with a specific
colour, and so on. Our dataset well captures these two
types of IoT traffic from a lab that represents a living smart
environment (i.e. covering periods over which humans are
present or absent in the environment).
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(b) Flow duration.
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(c) Average flow rate.
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(d) Device sleep time.
Fig. 3. Distribution of IoT activity pattern: (a) flow volume, (b) flow duration, (c) average flow rate and (d) device sleep time.

To provide insights into the IoT traffic characteristics,
we show in Fig. 2 a Sankey plot of network traffic seen
over a 24 hour period for Amazon Echo and LiFX lightbulb.
These devices are chosen just for illustrative purposes. Each
plot depicts the flow-level information generated by the
respective device. Flows are: (a) either unicast or multi-
cast/broadcast, (b) destined to either local hosts (LAN) or
Internet servers (WAN), and (c) tied to protocols (TCP, UDP,
ICMP or IGMP) and port numbers.

Fig. 2 provides a visual aid depicting the underlying
traffic signature exhibited by the two devices. For example,
DNS (port number 53) and NTP (port number 123) are
used by both Amazon Echo and LiFX lightbulb. While
Amazon Echo uses HTTP (port number 80), HTTPS
(port number 443) and ICMP (port number 0), LiFX
lightbulb does not use any of these applications. Further,
each device seems to communicate to a unique port
number on a WAN server; TCP 33434 for Amazon
Echo and UDP 56700 for LiFX lightbulb, as shown
by the top flow in Figures 2(a) and 2(b). Finally, we
observe that Amazon Echo accesses a number of domain
names including softwareupdates.amazon.com,
device-metrics-su.amazon.com, example.org,
pindorama.amazon.com and pool.ntp.org. However,
LiFX lightbulb communicates with only two domains, i.e.
v2.broker.lifx.co and pool.ntp.org.

4.1 IoT Activity and Volume Pattern
We start with the activity pattern of IoT devices that is
defined by the properties of their traffic flows. We define

four key attributes at a per-flow level to characterize IoT
devices based on their network activity: flow volume (i.e.
sum total of download and upload bytes), flow duration (i.e.
time between the first and the last packet in a flow), average
flow rate (i.e. flow volume divided by the flow duration),
and device sleep time (i.e. time interval over which the IoT
device has no active flow).

We plot in Fig. 3 the probability distribution of the above
four attributes for a chosen set of IoT devices using the
trace data collected over 26 weeks. It can be observed from
Fig. 3(a) that each IoT device tends to exchange a small
amount of data per flow. For the case of the LiFX lightbulb
(depicted by red bars), 26% of flows transfer between [130,
140] bytes and 20% between [120, 130] bytes. The flow vol-
ume for the Belkin motion sensor (depicted by green bars)
is slightly higher; over 35% of flows transfer between [2800,
3800] bytes. For the Amazon Echo (depicted by blue bars),
over 95% of flows transfer less than 1000 bytes. Though we
present the flow volume histogram for only a few devices,
most of our IoT devices exhibit a similar predictable pattern.

A similar pattern emerges for the flow duration as well.
Referring to Fig. 3(b), we note that the flow duration of 53
seconds is seen in more than 40% of flows for Amazon Echo,
while a duration of 60 seconds is seen for the LiFX lightbulb
and Belkin motion sensor with a probability of 50% and 21%
respectively.

For the average flow rate attribute, Fig. 3(c) shows that
the mean rate is rather small, in the bits-per-second range
as one would qualitatively expect. Quantitatively, the figure
shows that the LiFX lightbulb has an average flow rate of 18
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(a) Amazon Echo {10}. (b) LiFX lightbulb {5}. (c) Awair air monitor {7}. (d) Netatmo weather station {4}.

(e) Belkin motion sensor {7}. (f) Belkin power switch {7}. (g) Belkin camera {9}. (h) Non-IoT {2382}.
Fig. 4. Word-cloud of server ports (total count of unique ports is shown in {sub-captions} next to the device name).

(a) Amazon Echo {30}. (b) Google Dropcam {5}. (c) HP printer {6}.

(d) Belkin camera {11}. (e) Belkin motion sesnor {5}. (f) Belkin power switch {8}.

(g) Awair air quality monitor {5}. (h) LiFX lightbulb {2}. (i) Non-IoT {11927}.
Fig. 5. Word-cloud of domain names (total count of unique domains is shown in {sub-captions} next to the device name).

bits-per-second nearly 60% of the time. Nearly 30% of Belkin
flows have a bit rate in the range 59 to 60 bits-per-second
while nearly 40% Amazon Echo flows have a bit range in
the range 70 to 71 bits-per-second.

Lastly, in terms of the sleep time for the devices Fig. 3(d)
shows that the Belkin motion sensor and the LiFX lightbulb
exhibit a distinct sleep pattern. The duration is 1 second
and 60 seconds with probability 73% and 48% respectively.
However, multiple sleep times with small probabilities are
observed for the Amazon Echo. This is because Amazon
Echo keeps its TCP connections alive and goes to sleep only
when it disconnects from the Internet. Other devices in our
test-bed also perform like the Echo and do not seem to have
a dominant sleep pattern.

4.2 IoT Signaling Pattern
We now focus on the application layer protocols, inferred
using the port numbers, that IoT devices mostly use to
communicate locally in the LAN and/or externally with
servers on the public Internet.

4.2.1 Server port numbers

Fig. 4 shows the word cloud of server-side port numbers
of all flows initiated from a variety of IoT devices. For
each device, if a port is used more frequently then it is
shown by a larger font-size in the respective word cloud.
Sub-captions (i.e. numbers within {}) report the number
of unique server ports for each device. It can be seen that
IoT devices each uniquely communicate with a handful of
server ports whereas non-IoT devices use a much wider
range of services (i.e. 2382 unique ports are shown in
Fig. 4(h) and many of them are very infrequent). We observe
that non-standard ports 33434, 56700, 8883, and 25050 are
prominently seen in traffic originating from Amazon Echo,
LiFX lightbulb, Awair air quality monitor, and Netatmo
weather station respectively, as shown in the top row of
Fig. 4. Further, we note devices from the same manufacturer
share certain ports. For example, port numbers 8443 and
3478 are common between Belkin’s motion sensor, power
switch, and camera, as shown in Figures 4(e)-4(g). We also
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note that well-known standard port numbers such as 53
(DNS), 123 (NTP), 0 (ICMP) and 1900 (SSDP) are used by
many of the IoT devices as well as the non-IoTs with various
frequencies, as shown in Fig. 4. Moreover, the server-side
port number of 443 (TLS/SSL) is also used by many of the
IoT devices.

4.2.2 DNS queries
DNS is a common application used by almost all networked
devices. Since IoT devices are custom-designed for specific
purposes, they access a limited number of domains cor-
responding to their vendor-specific end-point servers. We
plot in Fig. 5 the word cloud of domain names accessed by
several IoT devices as well as non-IoTs. It is seen that IoT
devices are fairly distinguishable by the domain names they
communicate with. For example, as depicted in Figures 5(a)-
5(c), domains such as example.com, example.net, and
example.org are frequently requested by Amazon Echo;
sub-domains of hp.com and hpeprint.com are seen
in DNS queries from the HP printer. However, we also
see that some prominent domain names are shared be-
tween the different devices. For example, belkin.com and
d3gjecg2uu2faq.cloudfront.net are commonly used
by Belkin devices (i.e. camera, motion sensor and power
switch) as shown in Figures 5(d)-5(f); or pool.ntp.org is
prominent in traffic flows generated from Google Dropcam,
Awair air quality monitor and LiFX lightbulb, as shown in
Figures 5(b)-5(h). Again considering non-IoTs in Fig. 5(i), we
see about 12000 unique domains visited which is far diverse
compared to IoT devices with only a handful of domains
accessed repeatedly.

{"ciphersuite":["c014", "c00a", "0039", "0038", "0037", "0036", "0088", "0087", "0086", 

"0085", "c00f", "c005", "0035", "0084", "c013", "c009", "0033", "0032", "0031", "0030", 

"009a", "0099", "0098", "0097", "0045", "0044", "0043", "0042", "c00e", "c004", "002f", 

"0096", "0041", "0007", "c011", "c007", "c00c", "c002", "0005", "0004", "c012", "c008", 

"0016", "0013", "0010", "000d", "c00d", "c003", "000a", "0015", "0012", "000f", "000c", 

"0009", "00ff"] , "negotiated cipher":"002f"}

(a) cs1 of Amazon Echo.

{"ciphersuite":["c030", "c02c", "c028", "c024", "c014", "c00a", "00a5", "00a3", "00a1", 

"009f", "006b", "006a", "0069", "0068", "0039", "0038", "0037", "0036", "0088", "0087", 

"0086", "0085", "c032", "c02e", "c02a", "c026", "c00f", "c005", "009d", "003d", "0035", 

"0084", "c02f", "c02b", "c027", "c023", "c013", "c009", "00a4", "00a2", "00a0", "009e", 

"0067", "0040", "003f", "003e", "0033", "0032", "0031", "0030", "009a", "0099", "0098", 

"0097", "0045", "0044", "0043", "0042", "c031", "c02d", "c029", "c025", "c00e", "c004", 

"009c", "003c", "002f", "0096", "0041", "0007", "c011", "c007", "c00c", "c002", "0005", 

"0004", "c012", "c008", "0016", "0013", "0010", "000d", "c00d", "c003", "000a", "0015", 

"0012", "000f", "000c", "0009", "00ff"] , "negotiated cipher": "c02f"}

(b) cs2 of Amazon Echo.

Fig. 8. Signature of cipher suite.

We also found that IoT devices differ from one other
in how often the DNS protocol is used. We have observed
from our traffic traces that IoT devices generate DNS queries
during different stages of its operation; for example only
during the boot-up phase (e.g. Google Dropcamp) or when
interacting with a user (e.g. Hello Barbie) or periodically
(e.g. Amazon Echo). As shown in Fig. 6, certain IoT devices
exhibit a characteristic signature in the frequency of their
DNS queries. The LiFX lightbulb and Amazon Echo send
DNS queries very frequently (i.e. every 5 minutes) but a
device like the Belkin motion sensor requests domain names
only once every 30 minutes.

4.2.3 NTP queries
As mentioned earlier, NTP is another popular protocol used
by IoT devices because precise and verifiable timing is
crucial for IoT operations [34]. Many IoT devices tend to
use NTP protocol (UDP port 123) in a periodic manner
in order to synchronize their time with publicly available
NTP servers. For example, Awair air quality monitor, LiFX
lightbulb and Google Dropcam obtain the IP address of
time servers from pool.ntp.org. We also find that time
synchronization occurs repeatedly in our test-bed and many
IoT devices exhibit a recognizable pattern in the use of NTP.
For example, the Belkin power switch, LiFX lightbulb and
SmartThings hub send NTP requests every 60, 300 and 600
seconds respectively, as shown in histogram plot of Fig. 7.

4.2.4 Cipher suite
A number of IoT devices use TLS/SSL protocol (port num-
ber 443) to communicate with their respective servers on
the Internet [30]. In order to initiate the TLS connection
and negotiate the security algorithms with servers, devices
start handshaking by sending a “Client Hello” packet with
a list of “cipher suites” that they can support, in the order of
their preference. For example, Figures 8(a) and 8(b) depict
cipher suites that Amazon Echo offers to two different
Amazon servers. Each cipher suite (i.e. 4-digit code) can
take one of 380 possible values and represents algorithms
for key exchange, bulk encryption and message authentica-
tion code (MAC). For example, the cipher 002f negotiated
by an Amazon server uses RSA, AES 128 CBC, and SHA
protocols for key exchange, bulk encryption and message
authentication, respectively.

We find that 17 out of the 28 IoT devices in our setup,
including the Amazon Echo, August Doorbell Cam, Awair
air quality monitor, Belkin Camera, Canary Camera, Drop-
cam, Google Chromecast, Hello Barbie, HP ENVY Printer,
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Fig. 9. Signature of cipher suite.

iHome, Netatmo Welcome camera, Philips Hue lightbulb,
Pixtar photoframe, Ring Door Bell, Triby, Withings Aura
smart sleep sensor and Withings Scale, use TLS/SSL for
communication. We find that Amazon Echo uses total of
five different cipher suite strings when communicating SSL
to different servers, Triby speaker uses two strings, while
the Pixtar photoframe uses only one string for all of its SSL
communications. We plot unique cipher suite strings from
these three devices in Fig. 9 as discrete signals: x-axis is the
order of 4-digit cipher codes that appear in the offered suite,
and y-axis is the index of the individual cipher codes (i.e.
a value from {1, 2, ..., 380}). It is seen that the collection of
cipher suite signals enunciates a unique signature for each
IoT device. Exceptionally, we found that Pixtar photoframe
shares its single cipher suite with one of 18 suites that are
used by August door-bell – we will see in §5.2 that relying
only on cipher suite attribute would not be effective in
classifying Pixtar photo-frame traffic.

There are however many devices that rarely exchange
cipher suites but instead prefer to keep their TLS connec-
tions alive for a long period. For example, Google Dropcam
establishes a TLS connection to its own server whenever
it boots up and maintains this connection as long as it
has network connectivity, while Amazon Echo and Pixstar
photoframe initiate on average 1 and 2 TLS connections
respectively every hour.

Summary: In this section, we have identified 8 key
attributes based on the underlying network traffic character-
istics of IoT devices. They are flow volume, flow duration,
average flow rate, device sleep time, server port numbers,
DNS queries, NTP queries and cipher suites. Although,
some devices (e.g. Amazon Echo, or LiFX lightbulb) can be
uniquely identified by considering just one or two traffic
attributes such as the list of domain-names, port-numbers,
or cipher suites, these come with challenges. For example, a
strong attribute like the list of cipher-suites is observed very
infrequently in the traffic (e.g. only once a day). As another
example, different types of devices from the same vendor
visit similar domains and use the same port numbers to
access cloud servers. Capturing aspects such as the number
of occurrences for these attributes (e.g. number of times a
domain is accessed or number of streams that use the port),
in combination with other attributes, vastly improves the
prediction capability to distinguish between devices from
the same manufacturer. In the next section, we develop a
multi-stage machine learning based algorithm using combi-
nations of these attributes to help classify IoT devices with
high accuracy.

5 MACHINE LEARNING BASED CLASSIFICATION

In order to synthesize the attributes from our trace data,
we first convert the raw pcap files into flows on an hourly
basis using the Joy tool [31]. Then, for a given IoT device,
we compute the traffic activity and signalling attributes
defined in the previous section over the hourly instances.
The number of instances for each device obtained from
the trace spanning 26 weeks varies depending on factors
such as the duration for which a device is online, or how
a device generates traffic (autonomously or interactively).
For example, there were only 13 hourly instances for the
Blipcare BP monitor since it generates traffic only when the
device is used by a user. On the other hand, we collected
4177 instances for Google Dropcam.

5.1 Multi-Stage Device Classification Architecture

We note that three of our attributes namely “set of domain
names”, “set of remote port numbers” and “set of cipher
suites” are nominal (i.e. are not treated as numeric values)
and multi-valued (for example, {”53”:3, ”123”:1, ”443”:2}
represents a set of remote port numbers with three occur-
rences of port number 53, two occurrences of port 123,
and one occurrence of port number 443). Our remaining
attributes including flow volume/duration, flow rate, sleep
time, and DNS/NTP intervals contain single quantitative
and continuous values. We therefore employ a two-stage
hierarchical architecture for our IoT classifier as shown in
Fig. 10.

In this architecture, we first feed each multi-valued at-
tribute to its corresponding stage-0 classifier in the form
of a “bag of words”. A bag of words is a matrix whose
rows represent labeled instances, and columns represent
unique words. This matrix has M rows (i.e. total number
of instances) and N columns (i.e. number of unique words).
We observed 356, 421 and 54 unique words for domain-
names, remote port numbers and cipher suite strings, as
shown in Fig. 10. In addition to these unique words, we
aggregated all corresponding words for non-IoT devices as
“others” - a column called “others” in each Stage-0 matrix
represents words not seen in IoT traffic. Each cell of this
matrix is the number of occurrences of such unique words
in a given instance.

As shown in Fig. 10, each classifier of Stage-0 generates
two outputs, namely a tentative class and a confidence
level, which together with other single-valued quantitative
attributes (i.e. flow volume, duration, rate, sleep time, DNS,
NTP intervals) are fed into a Stage-1 classifier that produces
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Fig. 10. System architecture of the multi-stage classifier.

the final output (i.e. the device identification with a confi-
dence level).

5.1.1 Stage-0: Bag-of-words Classifiers

We employ a Naive Bayes Multinomial classifier to analyze
each bag of words in the stage-0 of our machine. It has
been shown [35] that this classifier performs well in text
classification when dealing with a large number of unique
words. During the training phase, the classifier takes the
distribution of words, e.g. individual unique domain names,
and computes the probability of each word given a class
using:

Pr(wtrain
j |ci) =

1 +
D∑
l=1

nl,ci,wj
train

N +
N∑

k=1

D∑
l=1

nl,ci,wk
train

(1)

where wj is a unique word in the training dataset (e.g.
port number 56700); ci is a class label (e.g. LiFX lightbulb); D
is the total number of instances; nl,ci,wj

train is the number
of wj occurrences in each of instances with class label of
ci; N is the total number of unique words (e.g. we have
N = 421 unique port numbers in our dataset).

During the testing phase, the classifier needs to compute
the following probability for all possible classes:

Pr(ci|W test) = Pr(ctraini )
N∏
j=1

Pr (wj
train|ci)

ntest
j (2)

where W test is a set represented by {w1 : ntest
1 , w2 :

ntest
2 , ..., wN : ntest

N }; ntest
j is the occurrence number of indi-

vidual unique words wj in a given test instance; Pr(ctraini )
is the presence probability of a class ci in the whole training
dataset (i.e. number of ci training instances divided by
total number of all training instances). The classifier finally
chooses the class that gives the maximum probability in (2)
for a given set of words along with their occurrences. Note
that a Naive Bayes Multinomial classifier performs well
if training instances are fairly distributed among various
classes [35].

5.1.2 Stage-1 Classifier

We have a stage-1 classifier that takes all quantitative at-
tributes along with the pair of outputs from each stage-0
classifier. Since the stage-1 attributes are not linearly separa-
ble and the outputs of stage-0 classifiers are nominal values,
we use a Random Forest based stage-1 classifier. Another
reason for selecting the Random Forest is its high tolerance
to over-fitting compared to other decision tree classifiers.

5.2 Performance Evaluation

We use the Weka [36] tool for our IoT device classification.
We have collected a total of 50,378 labeled instances from
our traffic traces. As mentioned earlier, we have a number of
instances from different devices – those that generate traffic
when triggered by user interaction have small number of
instances (e.g. 13 for Blipcare BP monitor, 21 for Google
Chromecast) and those that autonomously generate traffic
have a fairly large number of instances (e.g. 2,868 for Sam-
sung Smart Things or 2,247 for Amazon Echo). We have
randomly split instances into two groups, one containing
70% of the instances for “training” and another containing
30% of the instances for “testing”.

Table 2 shows the performance of our classifier under
various scenarios, each captured by a pair of columns. For
a given scenario, we measure the true positive rate (i.e.
fraction of test instances that are correctly classified) and
false positive rate (i.e. fraction of test instances that are
incorrectly classified) for every device corresponding to the
rows in Table 2. We also obtain the average confidence
level (i.e. a number between 0 and 1 depicted within square
brackets in each cell) of our classifier for correctly classified
and incorrectly classified instances. In addition, we aggre-
gate the performance of individual classes and compute the
overall accuracy (i.e. total true positive rate) along with the
overall root relative squared error (RRSE) as measures of
performance for our classifier. These measures are reported
in the top row of each scenario in Table 2. Note that our
objective is to achieve a high accuracy (close to 100%) with
a fairly low error (close to zero).
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TABLE 2
Performance of the proposed IoT device classifier under different sets of attributes.

Devices
Port Numbers Domain Names Cipher Suite Combined stage-0 Final

Accuracy: 92.13% RRSE: 39.93% Accuracy: 79.48% RRSE: 57.56% Accuracy: 36.15% RRSE: 86.73% Accuracy: 97.39% RRSE: 18.24% Accuracy: 99.88% RRSE: 5.06%

Correctly
Classified Incorrectly Classified Correctly

Classified Incorrectly Classified Correctly
Classified Incorrectly Classified Correctly

Classified Incorrectly Classified Correctly
Classified Incorrectly Classified

Amazon Echo 100.0%
[1.00]

99.6%
[1.00]

Dropcam: 0.4% [0.08] 100.0%
[1.00]

99.9%
[1.00]

HP Printer: 0.1% [0.52] 99.7%
[1.00]

NonIoT: 0.1% [0.37]

Dropcam: 0.1% [0.43]

August Doorbell 99.0%
[1.00]

iHome Plug: 0.6% [1.00]

Others: 0.4% [0.65]
100.0%
[1.00]

78.8%
[1.00]

Pixstar Photo.: 21.2% [1.00] 100.0%
[1.00]

100.0%
[1.00]

Awair air quality 97.6%
[1.00]

NonIoT: 2.0% [0.32]

Amazon Echo: 0.4% [0.53]
99.2%
[1.00]

Smart Things: 0.4% [0.49]

Dropcam: 0.4% [0.08]
99.2%
[0.63]

Dropcam: 0.8% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Belkin Camera 95.5%
[1.00]

Belkin Motion: 3.0% [0.94]

Others: 1.5% [0.67]
39.4%
[0.99]

Belkin Motion: 59.8% [0.62]

NonIoT: 0.8% [1.00]

0.0%
[-]

Dropcam: 100.0% [0.08] 97.7%
[0.99]

NonIoT: 1.5% [0.74]

Dropcam: 0.8% [1.00]
97.7%
[0.99]

NonIoT: 1.5% [0.60]

Netat. Camera: 0.8% [0.57]

Belkin Motion 99.8%
[1.00]

NonIoT: 0.2% [1.00] 0.0%
[-]

Belkin Switch: 100.0% [0.57] 0.0%
[-]

Dropcam: 100.0% [0.08] 99.5%
[1.00]

Samsung Cam: 0.3% [0.79]

NonIoT: 0.2% [1.00]
99.8%
[1.00]

NonIoT: 0.2% [0.97]

Belkin Switch 99.5%
[1.00]

Belkin Motion: 0.2% [0.77]

Others: 0.3% [0.75]
99.7%
[0.57]

Dropcam: 0.2% [0.08]

Blipcare BP Meter: 0.1% [0.79]

0.0%
[-]

Dropcam: 100.0% [0.08] 99.8%
[1.00]

Belkin Motion: 0.2% [1.00] 99.8%
[1.00]

Belkin Motion: 0.2% [0.93]

Canary Camera 100.0%
[1.00]

100.0%
[1.00]

100.0%
[1.00]

100.0%
[1.00]

100.0%
[1.00]

Dropcam 98.1%
[0.33]

Smart Things: 0.6% [0.99]

Others: 1.3% [0.59]
100.0%
[0.09]

100.0%
[0.09]

74.0%
[0.96]

HP Printer: 25.7% [0.52]

Others: 0.3% [0.41]
100.0%
[1.00]

LiFX Bulb 100.0%
[1.00]

99.7%
[0.70]

Smart Things: 0.1% [0.42]

Dropcam: 0.1% [0.08]
0.0%

[-]
Dropcam: 100.0% [0.08] 100.0%

[1.00]
100.0%
[1.00]

NEST Smoke 100.0%
[1.00]

100.0%
[1.00]

0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Netat. Weather 99.8%
[1.00]

Dropcam: 0.2% [0.08] 99.9%
[1.00]

Dropcam: 0.1% [0.08] 0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Netat. Camera 95.4%
[1.00]

Dropcam: 2.0% [0.97]

Others: 2.6% [0.70]
97.8%
[1.00]

Dropcam: 2.2% [0.08] 99.7%
[0.92]

Dropcam: 0.3% [0.08] 99.8%
[1.00]

Pixstar Photo.: 0.1% [0.54]

Dropcam: 0.1% [0.60]
99.9%
[1.00]

Hue Bulb: 0.1% [0.37]

Pixstar Photo. 99.7%
[1.00]

Dropcam: 0.3% [0.08] 99.3%
[1.00]

Dropcam: 0.7% [0.08] 0.0%
[-]

August Doorbell: 99.7% [0.71]

Dropcam: 0.3% [0.08]

100.0%
[1.00]

100.0%
[1.00]

Samsung Cam 99.4%
[1.00]

Belkin Motion: 0.6% [1.00] 14.5%
[1.00]

Dropcam: 73.4% [0.10]

Smart Things: 12.0% [0.43]
0.0%

[-]
Dropcam: 100.0% [0.08] 100.0%

[1.00]
100.0%
[1.00]

Smart Things 97.5%
[1.00]

LiFX Bulb: 1.9% [0.99]

Others: 0.5% [0.68]
79.9%
[0.50]

LiFX Bulb: 20.1% [0.50] 0.0%
[-]

Dropcam: 100.0% [0.08] 99.8%
[1.00]

LiFX Bulb: 0.1% [0.88]

Dropcam: 0.1% [0.97]
99.8%
[1.00]

LiFX Bulb: 0.1% [0.71]

Dropcam: 0.1% [0.67]

TP-Link Cam. 100.0%
[1.00]

99.7%
[1.00]

Dropcam: 0.3% [0.08] 0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[1.00]

100.0%
[1.00]

TP-Link Plug 99.7%
[1.00]

Dropcam: 0.3% [0.08] 99.7%
[0.99]

Dropcam: 0.3% [0.08] 0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Triby Speaker 98.0%
[1.00]

Netat. Weather: 1.2% [0.37]

Others: 0.8% [0.49]
100.0%
[1.00]

41.2%
[0.99]

Dropcam: 54.8% [0.08]

Netat. Weather: 4.0% [0.16]
99.9%
[1.00]

NonIoT: 0.1% [1.00] 99.9%
[1.00]

NonIoT: 0.1% [0.84]

Withings Sleep. 96.8%
[1.00]

NonIoT: 1.9% [0.99]

Others: 1.2% [0.55]
99.6%
[1.00]

Dropcam: 0.4% [0.08] 23.5%
[1.00]

Dropcam: 76.5% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Hue Bulb 88.8%
[1.00]

Samsung Cam: 11.1% [0.45]

Belkin Motion: 0.1% [1.00]

89.0%
[1.00]

Dropcam: 11.0% [0.08] 0.8%
[0.71]

Dropcam: 99.2% [0.08] 99.9%
[1.00]

NonIoT: 0.1% [0.57] 99.9%
[1.00]

NonIoT: 0.1% [0.47]

Google Chromecast 62.5%
[1.00]

Amazon Echo: 25.0% [0.52]

NonIoT: 12.5% [0.60]
100.0%
[1.00]

100.0%
[0.98]

87.5%
[1.00]

Dropcam: 12.5% [0.69] 87.5%
[0.98]

Dropcam: 12.5% [0.57]

HP Printer 61.5%
[0.99]

Dropcam: 38.0% [0.16]

Others: 0.6% [0.86]
3.8%
[1.00]

Dropcam: 96.2% [0.08] 2.5%
[0.45]

Dropcam: 97.1% [0.08]

Others: 0.4% [0.75]
99.3%
[0.82]

Dropcam: 0.4% [0.85]

Others: 0.2% [0.39]
99.8%
[0.99]

NonIoT: 0.1% [0.67]

Dropcam: 0.1% [0.28]

iHome Plug 79.2%
[0.90]

Dropcam: 10.2% [0.34]

Others: 10.6% [0.42]
87.5%
[0.97]

Dropcam: 12.5% [0.08] 18.0%
[0.57]

Dropcam: 82.0% [0.08] 89.8%
[1.00]

Dropcam: 9.8% [0.96]

HP Printer: 0.4% [0.52]
100.0%
[0.99]

Withings Baby Mon. 58.2%
[1.00]

NonIoT: 41.8% [1.00] 100.0%
[1.00]

0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Withings Scale 74.8%
[0.98]

NonIoT: 15.3% [0.56]

Others: 9.9% [0.19]
41.4%
[0.79]

Withings Sleep.: 56.8% [0.96]

Dropcam: 1.8% [0.08]

42.3%
[0.33]

Dropcam: 57.7% [0.08] 99.1%
[1.00]

Dropcam: 0.9% [0.54] 100.0%
[1.00]

Ring Door Bell 0.6%
[0.98]

Netat. Weather: 95.8% [0.18]

Others: 3.6% [0.60]

100.0%
[0.98]

7.8%
[1.00]

Dropcam: 92.2% [0.08] 100.0%
[1.00]

100.0%
[1.00]

Blipcare BP Meter 20.0%
[0.54]

Ring Door Bell: 80.0% [0.41] 40.0%
[0.79]

HP Printer: 60.0% [0.44] 0.0%
[-]

Dropcam: 100.0% [0.08] 100.0%
[0.90]

100.0%
[0.85]

Hello Barbie 0.0%
[-]

Dropcam: 71.4% [0.08]

Others: 28.6% [0.50]
21.4%
[1.00]

Dropcam: 71.4% [0.08]

HP Printer: 7.1% [0.45]
21.4%
[0.99]

Dropcam: 78.6% [0.08] 14.3%
[0.97]

HP Printer: 78.6% [0.52]

Dropcam: 7.1% [0.61]
92.9%
[0.99]

Hue Bulb: 7.1% [0.35]

NonIoT 74.2%
[0.98]

Triby Speaker: 16.6% [0.90]

Others: 9.2% [0.69]
66.9%
[0.97]

Dropcam: 29.7% [0.08]

Others: 3.4% [0.73]
59.5%
[0.79]

Dropcam: 36.3% [0.08]

Others: 4.2% [0.73]
98.8%
[1.00]

HP Printer: 1.1% [0.56]

Dropcam: 0.2% [0.75]
99.7%
[0.99]

HP Printer: 0.3% [0.55]

5.2.1 Performance of Stage-0: Port Numbers Attribute

The first three columns correspond to those cases in which
we consider only nominal attributes of stage-0 (i.e. bag of
words corresponding to port numbers, domain names and
cipher suites). The first column shows that when we only
use a list of server-side port numbers for device classifica-
tion, a reasonable accuracy of 92.13% is achieved, but RRSE
is poor (at 39.93%). Inspecting the individual classes, we
observe that certain classes highlighted by yellow or light-
green (e.g. Ring door bell, Blipcare BP monitor, Hello Barbie,
and Google chromecast) are poorly classified. We explain
the reason behind this misclassification next.

Ring door bell: Out of 486 instances, 465 contain a single
occurrence of the DNS query (i.e. remote port number 53).
We see that 95.8% of test instances are incorrectly classified

as Netatmo weather station. This is because of two reasons:
(i) there are 2451 training instances of Netatmo compared to
323 of Ring door bell, which makes Pr(ctraini ) of Netatmo
larger than that of Ring door bell, and (ii) many Netatmo
instances contain several (on average 4 times) occurrences
of port 53 as opposed to only one for Ring Door bell, which
also contributes to Pr(wj |ci) of Netatmo being greater than
that for Ring door bell in (1). Thus, Ring door bell instances
get classified as Netatmo weather station, warranting a
second stage of classification with additional attributes for
improved accuracy.

Blipcare BP monitor: It uses only two remote port
numbers, namely 8777 and 53, in a total of 13 instances
- the port numbers appear only once or twice in each
instance. Surprisingly, we see that 80% of Blipcare test
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Fig. 11. Confusion matrix of our IoT device classification using all attributes (accuracy: 99.88%, RRSE: 5.06%).

instances are incorrectly classified as Ring Door Bell though
the remote port number of 8777 is unique to the Blipcare
BP monitor. This is because there are only a very small
number of Blipcare instances in our dataset, which results
in a fairly small value of Pr(“53”|Blipcare) = 0.0203 and
Pr(“8777”|Blipcare) = 0.0294 in (1), and a negligible value
of Pr(Blipcaretrain) = 0.0003 in (2). On the other hand,
Pr(“8777”|Ring) becomes very small as the remote port
number 8777 is never used by the Ring Door Bell in our
dataset. However, the probability of Pr(“8777”|Ring) =
0.0011 in (1) is sufficient enough to maximize the classifier
probability Pr(Ring|{“53” : 1, “8777” : 1}) in (2), given
Pr(Ringtrain) = 0.0097.

Other devices: Server-side port numbers are empty in
72% of instances for Hello Barbie, since it communicates
with local devices instead of Internet-based end-points. Sim-
ilarly for HP printer (38%) and iHome power plug (10%).
The lack of server-side port number information explains
why these devices are classified as Dropcam, which has the
highest value of Pr(Dropcamtrain) = 0.0828 in (2). We note
that the confidence level of our stage-0 classifier is fairly low
(i.e. less than 0.4) in these cases, suggesting that the classifier
chooses the most probable class given empty attribute (i.e.
all ntest

j are zero).

5.2.2 Performance of Stage-0: Domain Names Attribute
We now focus on the stage-0 machine that uses only a
bag of domain-names, which yields an accuracy of 79.48%
with a fairly high RRSE value of 57.56%, as shown in the
second column in Table 2. In this scenario, more classes
suffer from misclassification (i.e. those with yellow coloured
cells) compared to the previous scenario where only remote
port numbers were considered. The reasons behind the

misclassification are threefold: (i) since devices from the
same manufacturer share a collection of domain names, as
discussed in §4.2.2, 59.8% of Belkin camera test instances
are misclassified as Belkin Motion sensor and 100% Belkin
Motion sensor instances are misclassified as Belkin switch.
Similarly, 56.8% of Withings scale instances are incorrectly
classified as Withings sleep sensor, and 12% of Samsung
smart cam are misclassified as Samsung Smartthings. (ii) a
significant number of instances from select devices contain
no DNS query entries (e.g. 96.2% of HP printer, 73.4%
of Samsung Smart Cam, 71.4% of Hello Barbie, 12.5% of
iHome power plug, 11% of Hue bulb) and are thus incor-
rectly classified as a Dropcam, which also rarely generates
DNS packets. (iii) the low number of training instances with
domain names leads to poor performance (e.g. Blipcare BP
meter and Hello Barbie).

5.2.3 Performance of Stage-0: Cipher Suite Attribute
Considering only the cipher suite attribute, this stage-0
classifier results in a fairly low accuracy of 36.15% with
a high RRSE of 86.73%, as shown in the third column in
Table 2. Again, the main reason for such poor performance is
the scarcity of cipher suite attribute in the training instances,
though this attribute carries a very strong signature to
uniquely identify an IoT device. Note that many of the
IoT devices do not use secure communication at all and
are thus devoid of this attribute (i.e. have an empty field
for it). Unsurprisingly, instances of devices that exchange
cipher suite fairly frequently including Amazon Echo, Aw-
iar air quality monitor, Canary camera, Google Chromecast
and Netatmo camera are correctly classified, as shown by
the dark-green color cells in the corresponding column in
Table 2. In addition, we find that August doorbell cam is
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TABLE 3
Impact of attributes combination on performance of classifier.

Accuracy RRSE

all attributes 99.88% 5.06%

low- and medium-cost attributes 99.68% 7.70%

only low-cost attributes 97.85% 18.63%

sharing one of its cipher suite strings (out of total 18) with
Pixstar photoframe, which has a single cipher suite string.
Thus, 21.2% of August door bell instances are misclassified
as Pixstar photoframe and almost all instances of Pixstar
photoframe are classified as August doorbell.

5.2.4 Performance of Stage-0: Combination of Attributes
We expect the combination of the three bags of words (port
numbers, domain names, and cipher suites) to significantly
enhances the accuracy of our classifier, as indeed shown by
the fourth column titled “Combined stage-0” in Table 2. The
overall accuracy reaches to 97.39% with RRSE of 18.24%. It
can be seen that the majority of test instances are correctly
classified, except for Hello Barbie. This is because most of
the Hello Barbie attributes are empty in stage-0 and thus it
is classified as Dropcam, as mentioned earlier.

Interestingly, we see that all test instances of Blipcare BP
monitor are classified correctly though the accuracy of indi-
vidual stage-0 was fairly poor. This is because our decision-
tree-based classifier in stage-1 sees a strong correlation be-
tween the outputs of stage-0 classifiers and the actual class
of training instance, even though those outputs (tentative
class) are incorrect – e.g. having the tentative output from
remote port number classifier as Ring door bell, having the
tentative output from cipher suite classifier as Dropcam, and
having the confidence level from domain name classifier
less than 0.66 collectively is a strong indication of Blipcare
instance.

5.2.5 Overall Performance
As the last step, we incorporate the outputs from the stage-
0 classifiers into stage-1 (without the latter having any
notion of the quantitative attributes from the former), and
additionally include quantitative attributes (flow volume,
duration, rate, sleep time, DNS and NTP intervals). The last
column of Table 2 shows the overall performance of the
classification framework. In this case, the accuracy reaches
a remarkably high value of 99.88%, with almost all classes
labeled correctly with a very small value of RRSE at 5.06%.
Fig. 11 shows the full confusion matrix of our classification
when all the attributes are used in conjunction, and corrob-
orates that the diagonal entries (corresponding to correct
classification) are all at or very close to 100%, with just two
exceptions – the Google Chromecast and the Hello Barbie.
As explained earlier, the Chromecast gets classified as the
Dropcam in some instances, while the Hello Barbie gets
classified as a Hue bulb.

6 REAL-TIME OPERATION IN A NETWORK

Thus far, we have examined the performance of our multi-
stage classifier using off-line analysis on captured traffic
traces (i.e. pcap files). In this section, we discuss how one can
realize a real-time implementation of our system taking into
account the various stages involved in the analysis, namely

attribute collection, machine training, and interpreting the
classifier’s output.

6.1 Computing Attributes
Extracting the attributes on-the-fly requires infrastructure
that has sufficient visibility into the traffic flowing on the
network. Flow related attributes such as flow volume, flow
duration and flow rate can be extracted relatively easily
using network switches that are instrumented with special
hardware-accelerated flow-level analyzers, e.g. NetFlow ca-
pable devices [37]. We therefore deem the extraction cost of
flow related attributes to be fairly low, and show them via
blue color bars in Fig. 12(c) that depicts the relative costs
and merits of the various attributes.

Attributes including bag of port numbers, sleep-time,
and frequency of DNS/NTP requests can be extracted using
flow-aware network switches with extra computation and
state management. For example, remote port numbers of
all flows associated with a given IoT device need to be
recorded for the bag of port numbers. However, this specific
state is not captured by default in commodity switches.
Similarly, time intervals between successive UDP packets
of NTP/DNS should be recorded, which requires additional
computation. We therefore associate these attributes with
medium cost, and shown as yellow color bars in Fig. 12(c).

Lastly, two of our attributes, namely bag of domain
names and bag of cipher suite strings, can only be extracted
by looking inside the payload of the appropriate packets,
which imposes considerable cost on processing. Thus, we
associate these attributes with high collection cost, and
shown them via red color bars in Fig. 12(c).

Having understood the extraction cost of various at-
tributes, let us now examine the relative importance of
the attributes in classifying the IoT devices. We quantify
the importance of each attribute by employing the select
attributes tool in Weka with InfoGain attribute evaluator and
Ranker search method. Fig. 12(c) shows the attributes in
decreasing order of merit score. A high merit score translates
to superior strength in identifying the class of an instance.
We can see that the “flow-volume” is the most important
attribute, followed by “bag of remote port numbers”, “bag
of domain names” and “flow duration” respectively. The
sleep-time and NTP interval are the attributes with the
lowest merit.

Knowing the relative cost and merit of each attribute
allows us to evaluate the performance of our classifier using:
(a) only low cost attributes, (b) combination of low and
medium cost attributes, and (c) all attributes. The classifier
accuracy and RRSE are shown in Table 3. It is seen that us-
ing only low-cost attributes results in 97.85% accuracy with
an RRSE value of 18.63%; the additional use of medium-cost
attributes increases accuracy to 99.68% and significantly re-
duces the RRSE error to 7.7%; while including all attributes
yields an overall accuracy of 99.88% and RRSE of 5.06%.
The method can therefore be tuned to achieve appropriate
balance between attribute collection cost and accuracy/error
of classification.
6.2 Training the Machine
The duration of the training data set is another source of
cost incurred by our classification. In Fig. 12(a), we plot the
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Fig. 12. Operational insights for real-time implementation of our device classifier: (a) impact of training, (b) confidence-level for correct/incorrect
classification, and (c) importance of attributes.

accuracy of the classifier on the left y-axis and the RRSE on
the right y-axis as a function of the number of days involved
in collecting the training data set. Note that the x-axis is in
log-scale and each day represents 24 instances.

It can be seen that the classifier achieves an overall accu-
racy is 99.28% with only one day of training and saturates at
99.76% when trained over 16 days. On the other hand, RRSE
drops from 14.43% to 7.5% when the training duration is
increased from 1 day to 16 days. It further falls to 5.82%
when we train using 70% of all instances from 128 days. As
mentioned in §5, the RRSE value is sensitive to the accuracy
of individual classes. We therefore believe that if there is
a balanced number of instances from various classes, our
classifier would perform better in terms of RRSE.

6.3 Interpreting the Output of Classifier

As discussed in §5.1, our classifier generates a confidence
level during the testing phase. This can be used as a measure
of reliability for our classifier. If adequate information is not
provided by a test instance then the classifier will choose a
random class (as discussed in §5.2.1) with a low confidence
level - this can be interpreted as an “unknown” class.
For example, given instances with an empty value for the
cipher suite attribute, the corresponding stage-0 classifier
will output Dropcam class with a confidence value of less
than 10% - even for Dropcam instances that are classified
correctly the confidence level is low within the same range.

We plot the CCDF of confidence level of our stage-1
classifier in Fig. 12(b) for instances classified as correct and
incorrect. It is clearly seen that the confidence level is always
below 80% when an instance is incorrectly classified, as
shown by the red dotted line - the average confidence level
for incorrectly classified instances is 54.22%. On the other
hand, our classifier has an average 99.74% confidence level
for instances that are correctly classified. We note that for
only a negligible fraction of correctly classified instances (i.e.
0.37%) the confidence level is less than 80% as shown by
the blue dashed line. This suggests that we can comfortably
rely on our classifier’s output for a device if it results in a
confidence level of greater than 80%, otherwise we need to
collect more traffic (and richer instances) from that device in
order to increase the confidence level.

To demonstrate the ability of our classifier in detecting
changes of normal behavior, we have launched UDP reflec-
tion and TCP SYN attacks of varying rates on the Samsung
camera. When our classifier is fed these attributes during the
attack, it incorrectly identifies the device, but its confidence-
level drops to less than 50%. We note that the confidence
level is 100% for normal traffic from Samsung camera, as

shown in the last column of Table 2. This is taken as a sign
of anomalous behavior that warrants further investigation
by the network operator.

7 CONCLUSION

Despite the proliferation of IoT devices in smart homes,
enterprises, campuses, and cities around the world, oper-
ators of such environments lack visibility into what IoT
devices are connected to their networks, what their traffic
characteristics are, and whether the devices are functioning
appropriately free from security compromises. This work
is the first to systematically characterize and classify IoT
devices at run-time. We instrumented a smart environment
with 28 unique IoT devices and collected traffic traces con-
tinuously over 26 weeks. We then statistically characterized
the traffic in terms of activity cycles, signalling patterns,
communication protocols and cipher suites. We developed
a multi-stage machine learning based classification frame-
work that uniquely identifies IoT devices with over 99%
accuracy. Finally, we evaluated the real-time operational
cost, speed, and accuracy trade-offs of our classification
method. This paper shows that IoT devices can be identified
with high accuracy based on their network behavior, and
sets the stage for future work in detecting misbehaviors
resulting from security breaches in teh smart environment.
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